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Abstract

We prove that the Bers and Maskit slices of the quasifuchsian space of a once punctured

torus have a dense, uncountable set of points in their boundaries about which the boundary

spirals infinitely.

1 Introduction

Successive zooms into computer pictures of spaces of once-punctured torus groups such as the Maskit
slice, for example figure 1, suggest that the boundary spirals to an indefinite extent arbitrarily
near every point on the boundary. Miyachi [Miyachi03] showed that the shape of the boundary
of the Maskit, Earle and Bers slices near cusp points is approximately (2, 3)-cuspidal. Computer
plots suggest that if r/s is a very close Farey neighbour of p/q then the direction of the r/s-cusp
is approximately perpendicular to that of the p/q-cusp. By starting at any cusp and repeatedly
looking at very close Farey neighbours on the same side, it would seem that for any n we can find
a curve within the slice which spirals at least n times around a point very close to the initial cusp
in the boundary. This in turn would show that the boundary itself spirals to an indefinite extent
arbitrarily near every point on the boundary. Furthermore, it would seem that at the limit point
of a sequence of cusps about which the boundary spirals ever more, the boundary would spiral
infinitely. The purpose of this paper is to prove that in the case of the Maskit and Bers slices these
results hold. In particular, we will prove theorems 1 and 2 stated below. The definitions related to
spiralling are given in section 2.2.

Theorem 1 The boundaries of the Maskit and Bers slices spiral to an indefinite extent in both

directions near every point.

Theorem 2 The boundaries of the Maskit and Bers slices spiral infinitely at an uncountable dense

set of points.

This paper is divided into three sections. The first section is the introduction and contains no
rigorous results. It is intended to give an intuitive feeling for what we are aiming to prove, why it is
likely to be true and how the proof works. Section 2 contains background theory about quasifuchsian
space and slices, more detailed background on the structure and shape of cusps (section 2.1), and
the definition of “spiralling” used in this paper (section 2.2). The final section is the proof. Sections
3.1 and 3.2 are mostly algebra and the details can easily be skipped or just looked over quickly
(although the key to the proof is actually an algebraic fact proved in 3.2). The difficult part is
proving theorem 1, theorem 2 is a reasonably simple corollary.

The author would like to thank Caroline Series for extensive advice and the referee for detailed
comments on an earlier draft.
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Figure 1: Successive zooms into the Maskit slice suggesting spiralling. The figures go from the top

left to the bottom left in a clockwise order. The thick black line in each box is the boundary of the

slice, the thinner lines are the pleating rays. The dashed box shows the area being zoomed to in

the next box.

1.1 Motivation

Figure 10 is a picture of the Maskit slice, while figure 2 shows the Bers slice. These slices are defined
in section 2. In both figures the thick jagged black line is the boundary, and the thinner lines are the
pleating rays (section 2) which end at cusps in the boundary. Figure 1 shows six successive zooms
into the Maskit slice. The direction of the main cusp shown gradually rotates counterclockwise from
upwards to leftwards. Some of the cusps visible in the last box (the bottom left one) point straight
down. If we imagine this procedure to continue indefinitely, and we think about what the boundary
must do, it seems it must spiral to an indefinite extent. In other words, the boundary should look
a bit like figure 3 (only the scale of the spirals is so small that it is never visible). In section 2.2 we
will define the exact sense in which it is spiralling.

Figure 2: The Bers slice, with the inside shaded grey and pleating rays shown

1.2 Outline

The Maskit and Bers slices are one complex dimensional subsets of quasifuchsian once punctured
torus space, which has complex dimension two. By embedding them holomorphically in C, we can
think of them simply as subsets of C bounded by a simple curve. This curve is a homeomorphic
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Figure 3: Spiralling - the outside spirals into the cusp, and so does the inside

image of R in the case of the Maskit slice, or the unit circle R̂ = R ∪ {∞} in the case of the Bers
slice. Corresponding to every rational number, there is a cusp in the boundary of the slice. An
example is shown in figure 5. In the case of the Bers slice, ∞ also has a corresponding cusp.

Define Γ = 〈X,Y 〉 to be the free group on two generators X and Y . The geometric meaning will be
explained in the next section, but for the moment we only need to understand the combinatorics.
The key to understanding the combinatorial structure of the boundary of the Maskit and Bers slice
is the following correspondence.

cusps ←→ certain words in Γ ←→ rational numbers

The correspondence between cusps in the boundary of the slice and certain words in Γ is geo-
metrically defined in the next section. The correspondence between rational numbers and certain
words in Γ is defined inductively as follows. Define W−1/0 = Y , W0/1 = X and W1/0 = Y −1.
Now recursively define Wp/q by Wp/q⊕r/s = Wp/qWr/s where ps − rq = −1 (so p/q < r/s) and
p/q ⊕ r/s = (p + r)/(q + s). This defines Wp/q for all p/q, and we call p/q the slope of Wp/q. The
words Wp/q correspond to simple closed curves on a once punctured torus, see section 2 for details.
As an example, we can compute W2/3 as follows. Firstly, W1/1 = W0/1W1/0 as 0/1 ⊕ 1/0 = 1/1,
so W1/1 = XY −1. Now W1/2 = W0/1W1/1 = X2Y −1. Finally W2/3 = W1/2W1/1 = X2Y −1XY −1.
This process is illustrated in figure 4, each edge of the graph intersected by the vertical line end-
ing at 2/3 is a step in the inductive definition of W2/3. Rational numbers p/q and r/s satisfying
ps− rq = ±1 are said to be Farey neighbours, and two cusps corresponding to p/q and r/s are said
to be neighbouring cusps. In the Farey graph, embedded in the hyperbolic upper half plane model
in figure 4, the vertices are rational numbers and two vertices are connected by an edge if they are
neighbours.

With this combinatorial structure, we can give an outline of the proof of theorem 1. Suppose that
p/q and r/s are two neighbours with p/q < r/s. Define rn = (np + r)/(nq + s), or inductively by
r0 = r/s and rn+1 = p/q ⊕ rn. It is easy to check that rn and p/q are neighbours. This notation
will be used throughout this paper, and we will also write r∞ = p/q, so that rn → r∞. Suppose
that Wp/q = A and Wr/s = B, then the inductive definition above gives us that Wrn

= AnB.

Figure 5 is a close up of a cusp in the Maskit slice. The thinner less jagged curves are the pleating
rays, defined in the next section, which in this diagram end at cusps which are neighbours of the
main cusp. It will be shown that the direction of the pleating ray at the cusp is the same as the
direction in which the cusp is pointing. This is quite helpful in understanding these figures because
it is difficult to see the direction of the smaller cusps themselves. Figure 6 shows the sequence of
neighbouring cusps corresponding to the words AnB.

The key lemma in the proof of theorems 1 and 2, lemma 7, is that for large n, the direction of
the rn cusp is approximately perpendicular to the direction of the p/q cusp. This can be seen in
figure 7, an even closer view of a cusp in the Maskit slice. On the assumption of this result, proved
largely algebraically in section 3.2, the proof of theorem 1 in section 3.4 runs roughly as follows.
Take any cusp and look at a very close neighbour. Now look at a close neighbour of this, and so on.
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Figure 4: The Farey graph, showing how to get to 2/3

Figure 5: A cusp with some neighbouring cusps in the Maskit slice. The thick line is the boundary,

the thinner lines are the pleating rays.

Each time you do this, the boundary rotates an extra π/2 about the new cusp, so that we can get
as much spiralling as we like. Figure 8 illustrates this process with an unrealistic scale (the close
neighbouring cusps are in fact very small compared to the main cusp). The curves ℘1 to ℘4 are the
pleating rays ending at the cusps labelled µ1 to µ4.

2 Background and Definitions

Write Σ for a fixed once-punctured torus, andM = Σ×[0, 1]. DefineR(M) = Hom(Γ,PSL2C)/PSL2C

to be the representation space of a fixed free group on two generators Γ = 〈X,Y 〉, modulo
conjugation by PSL2C. Here we think of Γ as π1Σ, the fundamental group of Σ, and X and
Y as two generating elements (a meridian and a longitude for example). Similarly, we define
Rp(M) = {[ρ] ∈ R(M) : ρ([X,Y ]) is parabolic}. The set QF ⊆ R(M) consists of those classes of
representations whose images are quasifuchsian once-punctured torus groups. In particular, those
image groups are discrete and ρ([X,Y ]) is parabolic for ρ ∈ QF . In other words, QF ⊆ Rp(M).

For a representation ρ ∈ Hom(Γ,PSL2C) such that the conjugacy class [ρ] ∈ QF , the complex plane
C is partitioned into three parts, Ω+

ρ ,Ω
−
ρ and Λρ, where Ω±

ρ are simply connected regions on which
ρ(Γ) acts discontinuously and Λρ is the remainder of C, the limit set. The manifold Mρ = (H3∪Ω+

ρ ∪
Ω−

ρ )/ρ(Γ) is homeomorphic to M . The two ends of this manifold are Σ±
ρ = Ω±

ρ /ρ(Γ), and regarding

4



PSfrag replacements

A B

ABA2B

A3B

A4B

Figure 6: Enumerating neighbouring cusps

Figure 7: A close up view of a cusp with some neighbouring cusps in the Maskit slice. The thick

line is the boundary, the thinner lines are the pleating rays.

them as marked Riemann surfaces (ρ gives the marking), they have Teichmüller parameters ν±.
The group ρ(Γ) along with an ordered choice of generators is a marked once-punctured torus group.
The group together with the choice of generators is encoded by the representation ρ; the ordered
choice of generators being (ρ(X), ρ(Y )).

We finally complete QF to QF and generalise the Teichmüller parameters ν± to end invariants.
First of all, define QF to be the algebraic closure of QF in Rp(M). In a neighbourhood of QF ,
Rp(M) is a smooth complex variety of dimension 2. The set QF consists of elements [ρ] ∈ Rp(M)
such that ρ(Γ) is free and discrete.

Writing R̂ = R ∪ {∞} = S1, we define H = H ∪ R̂ (or equivalently H is a closed disc), and

∆ to be the diagonal of R̂ × R̂. For any representation [ρ] ∈ QF we can assign a pair of “end
invariants” (ν−, ν+) ∈ (H×H)−∆. Minsky proved in [Minsky99] that there is a continuous bijection
ν−1 : (H×H)−∆→ QF (but that the inverse map ν is not even continuous). If a marked punctured
torus group is in ∂QF = QF −QF then either ν± ∈ Q ∪ {∞} corresponding to pinching a curve
on Σ±

ρ of slope ν± to a point, or ν± is an irrational real corresponding to “pinching a lamination”
of slope ν±. See [Minsky99] for details.

Figure 9 shows three different quasifuchsian manifolds. The leftmost one is in the interior of QF ,
both Σ+ and Σ− are once punctured tori. The rightmost two are in the boundary ∂QF . The middle
one is pinched at the positive end, that is the meridian curve on Σ+ has been contracted until it
is a single point which is then removed. The surface Σ+

2 is then a triply punctured sphere. If the
curve which was pinched corresponds to Wp/q ∈ Γ = π1Σ, then the end invariant is ν+ = p/q. The
right hand manifold has both ends pinched to triply punctured spheres. In the diagram, both the
+ and − ends of the manifold look the same, but in fact this cannot occur. The two curves which
are pinched must be different, but this is impossible to illustrate. The right hand manifold of figure
9 should be thought of as schematic.

Both the Maskit and Bers slices are defined by holding one end invariant fixed and letting the other
vary. Sometimes a Maskit slice is considered to be a slice where every element has end invariants
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Figure 9: Various quasifuchsian manifolds

(ν−, ν+) and say ν− is fixed. However, we will say that a Maskit slice is any where ν− ∈ Q∪{∞} is
fixed and ν+ varies (occasionally called rational Maskit slices), and a Bers slice is any where ν− ∈ H

is fixed and ν+ varies. What we are here calling Maskit slices, McMullen refers to as limit Bers
slices in [McMullen98].

In the interior of a Maskit slice, the 3-manifold Mρ has two ends one of which is a triply punctured
sphere corresponding to the fixed end invariant ν− and the other is a once-punctured torus corre-
sponding to ν+. This is the middle manifold of figure 9. On the boundary of a Maskit slice, both
ends are triply punctured spheres corresponding to ν±. This is the rightmost manifold of figure 9.
In the interior of a Bers slice Mρ has two ends both of which are once punctured tori corresponding
to ν±, the leftmost manifold of figure 9. On the boundary of a Bers slice Mρ has one end a once-
punctured torus corresponding to ν− and the other end a triply punctured sphere corresponding to
ν+, the middle manifold of figure 9.

The Maskit slice can be very simply embedded in C in the following way. Define g : C →
Hom(Γ,SL2C) by

g(µ)(X) = −i
(

µ 1
1 0

)

, and g(µ)(Y ) =

(

1 2
0 1

)

.

Let ± : SL2C → PSL2C be the quotient map. The map [g] : C → Rp(M) is defined by setting
[g](µ) = [±g(µ)], and the set M = [g]−1(QF) ∩ H is shown in figure 10. The jagged curve at the
bottom is the boundary, and continues periodically in the same fashion with period 2. The slice
itself consists of the points on the upper side of this curve. The almost vertical curves coming out
of points on the boundary curve are the pleating rays, defined below. See [KeenSeries93] and more
generally [KeenSeries04] for more details.
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Figure 10: The Maskit slice, with pleating rays and interior shaded grey

It is possible to embed the Bers slice in C in a similar way using quadratic differentials.

To cover the case of the Maskit and Bers slices in one, we define a slice of QF by choosing an
injective holomorphic map f : C → Rp(M). A certain open subset K ⊆ C will consist of all the
interior points of the slice, so that f maps K biholomorphically to either the Maskit or Bers slice
contained in Rp(M). In both cases, the boundary ∂K is a simple curve, and K is simply connected.
Abusing language somewhat, we will also sometimes refer to the set K or K as the slice without
mentioning f .

For a word W ∈ Γ and a slice f : C → Rp(M), the trace function TrW : C → C is defined by
TrW (µ) = Tr f(µ)(W ). In fact, this only defines TrW up to ±1 but if µ ∈ K then you can choose
a sign for TrW in a neighbourhood of f(µ) (or equivalently in a neighbourhood of µ) because
Tr f(µ)(W ) 6= 0 for a free representation f(µ). The quantity Tr2W is always well defined. If W
corresponds to a cusp and µW is the cusp point on ∂K corresponding to W , then Tr2W (µW ) = 4.
The pleating ray corresponding to W is the unique connected subset ℘W ⊆ K of (Tr2W )−1((4,∞))
ending at the point µW . For an explanation of the geometrical significance, see [KeenSeries04]. These
rays can be seen in figures 10, 12 and 13. If we choose a sign for TrW in a neighbourhood of µW and
parameterise ℘W by ψ : [2,∞) so that TrW ψ(t) = t and differentiate, we get ψ′(t)Tr′W (ψ(t)) = 1.
In particular, the initial direction of ℘W is ψ′(2) = 1/Tr′W (µW ). This is also the direction in which
the approximately cuspidal boundary points.

2.1 Structure of Cusps

In [Wright88], David Wright showed, on the basis of conjectures now proven (with one exception,
see section 3.3), that for a cusp p/q in the Maskit slice, the set of cusp points corresponding to Farey
neighbouring fractions are approximately (2, 3)-cuspidal. More precisely, if p/q and r/s are Farey
neighbours, and rn = (np+ r)/(nq + s)→ r∞ = p/q, define µn to be the cusp point corresponding
to rn and µ∞ to p/q. Then he showed that

µn = µ∞ −
π2

A1n2
+

δπ2i

A1n3
(2 +B0) +O

(

1

n4

)

(2.1)

where A1, B0 and δ are constants. In particular, Re(A1(µn−µ∞)) = −π2/n2+O(n−3), Im(A1(µn−
µ∞)) = C/n3 +O(n−4) (for a real constant C), so that zn = A1(µn − µ∞) approximately satisfies
an equation of the form aRe(zn)3 = Im(zn)2. A curve of points (x, y) is a (2, 3)-cusp if it satisfies
ax3 = y2.

In [Miyachi03], Hideki Miyachi showed that for the Earle, Maskit and Bers slices, there is a neigh-
bourhood of a cusp in which not only the set of neighbouring cusp points, but the whole boundary
curve is approximately (2, 3)-cuspidal. More precisely, he showed that the boundary of any of these
slices in the neighbourhood of a cusp is (2, 3)-cuspidal in the following sense.

Definition 1 A (2, 3)-cusp curve is a possibly translated and scaled copy of the graph x2 = y3 in

R2. The cusp point is the translated image of (0, 0). A curve γ is (2, 3)-cuspidal at a point P ∈ γ
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if in a neighbourhood of P there are two (2, 3)-cusp curves with cusp points at P such that γ is

contained in the region between the two curves. Figure 11 shows this in the case of the boundary of

a slice, the two (2, 3)-cusps are shown dashed, and the boundary curve γ is unbroken.

Figure 5 shows an actual plot of a neighbourhood of a cusp in the Maskit slice (with pleating rays).

Inside

slice

Outside

slice
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Figure 11: Local structure of the boundary near a cusp

Below, we give another proof that the boundaries of the Maskit and Bers slices are (2, 3)-cuspidal
at cusps using [ChoiSeries03] to simplify the argument. This also gives us more detailed information
about the structure of the cusp. In particular, we find an approximate local parameterisation of
the boundary curve which confirms the result of Wright above, and estimate the width of the area
of uncertainty between the two bounding (2, 3)-cusps. This is summarised in figure 12. The width
estimate will be important later on.

PSfrag replacements
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Figure 12: Further local structure of the boundary near a cusp

In David Wright’s equation 2.1, the constant A1 is in fact Tr′∞(µ∞). It is proved in [Miyachi03],
and more generally in [ChoiSeries03], that:

Proposition 3 Tr′∞(µ∞) 6= 0

This means that Tr∞ is a local parameter for the representation space in a neighbourhood of µ∞.
We will prove in section 3.1, lemma 5 that
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µn = µ∞ −
π2

n2 Tr′∞(µ∞)
+O(n−3).

This is consistent with Wright’s and Miyachi’s results.

It was mentioned at the end of section 1.2 that close neighbouring cusps are approximately perpen-
dicular. Figure 13 shows a schematic view of this perpendicularity phenomenon. In this figure the
main cusp point is labelled µ∞ and the sequence of neighbouring cusp points µn, their directions
are 1/Tr′n(µn) (allowing n = ∞), and their pleating rays are labelled ℘n. The precise formula we
shall prove in lemma 7 and corollary 8 is

Tr′n(µn) =
δn3iTr′∞(µ∞)

π2
+O(n2).

Here, the constant δ is ±1. Neighbouring cusps on one side of the main cusp will have δ = 1, and
on the other side will have δ = −1.

PSfrag replacements
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Figure 13: Schematic view of perpendicularity phenomenon

2.2 Spiralling

Defining the term spiralling is just a matter of capturing what is presumably already a shared
intuitive idea. In figure 3, it is clear that both the inside and the outside of the slice “spiral around”
the cusp point; and that the boundary, or any curve contained entirely inside our entirely outside
the slice, “spirals around” the cusp point as well.

Our definition of spiralling will be relative to a base point z0 whose choice will turn out to be
irrelevant. Suppose that K ⊆ C ∪ {∞} is any domain with ∂K a simple curve. In particular,
K must be simply connected and connected. Fix the base point z0 ∈ K. Now choose a point
z1 ∈ ∂K. Since K − {z1} is simply connected and does not contain z1, we can define a branch of
log(z − z1) on this region. In particular, choose the unique branch with Im log(z0 − z1) ∈ [−π, π).
Write L(z) = log(z − z1).

Definition 2 The degree of spiralling of any continuous curve α : [0, 1] → K connecting z0 to z1

with a smooth endpoint and α′(1) 6= 0 is

sp.degα = lim
t→1

ImL(α(t))− ImL(z0).
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The smoothness of α at the endpoint guarantees that sp.degα <∞. Such curves may not exist (in
particular, if the boundary is spiralling infinitely at that point, see below).

Definition 3 The degree of spiralling at a boundary point z1 is defined to be the set

Sp.Deg z1 = { sp.degα : α joins z0 to z1 }.

It turns out that for z1 a cusp, all curves ending at z1 have approximately the same spiralling
degree, and that the exact value of the spiralling degree of a curve α depends only on the direction
of the curve at the endpoint, α′(1). The following lemma is not necessary, but helps to justify the
usefulness of the definition of spiralling given here.

Lemma 4 If K is the Maskit or Bers slice, and µp/q ∈ ∂K is a cusp, then diam Sp.Deg µp/q ≤ 2π.

Moreover, two curves α1 and α2 with smooth endpoints joining the base point µ0 to µp/q sat-

isfy α′
1(1)/|α′

1(1)| = α′
2(1)/|α′

2(1)| if and only if either sp.degα1 = sp.degα2 or | sp.degα1 −
sp.degα2| = 2π. Assuming sp.degα1 < sp.degα2, the latter situation can only occur if Sp.Deg µp/q =

[sp.degα1, sp.degα2].

Proof Let f : C → Rp(M) be a Maskit or Bers slice with f(K) ⊆ QF as defined in section 2.
We are considering the boundary point µp/q, the p/q-cusp of a Maskit or Bers slice. The associated
p/q-word is Wp/q ∈ Γ. Write Trp/q : U → C for the associated trace function, defined by Trp/q(µ) =
Tr(f(µ)(Wp/q)), chosen in a neighbourhood U ⊆ C of µp/q so that Trp/q(µp/q) = 2. The base point

is µ0 ∈ K and the function L is the branch of log(µ− µ0) defined on K. Proposition 3 asserts that
Tr′p/q(µp/q) 6= 0. From this we can deduce that there is a smooth curve in the complement of K
ending at the point µp/q. Consider the set of points µ ∈ U satisfying Trp/q(µ) ∈ (0, 2). Let ℘− be

the connected component of this set ending at µp/q. Any such µ ∈ ℘− cannot be in K, because
for such µ the word f(µ)(Wp/q) is elliptic and therefore the associated group f(µ)(Γ) could not be
discrete. Moreover ℘− is a smooth curve because it is contained in the real locus of an analytic
function.

Choose a sufficiently small ball Bε (of radius ε about µp/q) that ℘− ∩Bε is a simple curve. ℘− ∩Bε

connects µp/q to the circle ∂Bε. Write Cε = Bε−℘−. Given 0 < η < 2π we can choose ε sufficiently

small that ℘− ∩Bε is contained in a sector of Bε of angle η. Write Kε = (K − {µp/q}) ∩Bε. Since
Kε ⊆ Cε, we have that for any two points µ1, µ2 ∈ Kε, | ImL(µ1) − ImL(µ2)| ≤ 2π + η. Letting
η → 0 we can easily see that | sp.degα1 − sp.degα2| ≤ 2π. Write α̂i for α′

i(1)/|α′
i(1)|. If the spiral

degree of α1 and α2 is the same, then clearly α̂1 = α̂2. Write ℘̂− for the tangent direction of
℘− at µp/q (which is well defined because Tr′p/q(µp/q) 6= 0). If sp.degα2 = sp.degα1 + 2π then
α̂1 = α̂2 = ℘̂−. This situation occurs if the two curves α1 and α2 approach µp/q on different sides
of ℘−. It is also clear that if 0 < | sp.degα1 − sp.degα2| < 2π then α̂1 6= α̂2. �

Definition 4 We say that the boundary spirals to an indefinite extent near every point if for any

n ∈ N and any open neighbourhood U of any point z1 in the boundary, there is a point z2 ∈ U ∩ ∂K
and a curve α2 joining z0 to z2 such that | sp.degα2| > n. We say that the boundary spirals to an

indefinite extent in both directions near every point if there are two points z2, z3 ∈ U ∩∂K and two

curves α2 and α3 joining z0 to z2 and z3 respectively such that sp.degα2 > n and sp.degα3 < −n.

We extend the definition to infinite spiralling as follows (cf. [Pomm92]).

Definition 5 The boundary spirals infinitely at z1 if ImL(z) is unbounded in every neighbourhood

of z1.
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3 Proof

3.1 Cusp structure

The first stage in the proof of theorem 1 is to prove the facts about the local structure of cusp
points described in section 2.1.

Definition 6 At a given cusp µ∞ with associated trace function Tr∞ chosen near µ∞ so that

Tr∞(µ∞) = 2, the sequence µ∗
n is defined as follows.

µ∗
n = µ∞ −

π2

n2 Tr′∞(µ∞)

Any sequence µ̃n satisfying µ̃n = µ∗
n +O(n−3) is said to be an approximate cusp sequence.

In particular, we will prove:

Lemma 5 Let µn be the sequence of cusps which are neighbours of µ∞ as in section 2.1, then the

sequence µn is an approximate cusp sequence. That is, µn = µ∞ − π2

n2 Tr′
∞

(µ∞) +O(n−3).

The method of proving this comes from [Miyachi03]. We use:

Theorem 6 (Pivot Theorem, [Minsky99]) There exist positive constants ε, c1 such that, if

ρ : Γ→ PSL2C is a marked punctured-torus group and `(α) ≤ ε then

2πi

λ(α)
≈ ν+(α)− ν−(α) + i

where “≈” denotes a bound c1 on hyperbolic distance in H2 between the left and right sides.

Here α is an element of the fixed group Γ = 〈X,Y 〉, λ(g) is the complex length of the element
g ∈ PSL2C defined by the equation Tr(g) = 2 coshλ(g)/2, λ(α) = λ(ρ(α)), `(α) = Reλ(ρ(α))
and ν±(α) are the normalised end invariants of the two boundary components of the associated
hyperbolic 3-manifold. The normalisation is to choose an element T ∈ PSL2Z sending p/q to
∞ where α is the p/q-word in Γ, and to set ν±(α) = T (ν±) where ν± are the end invariants
or Teichmüller parameters of ρ. It is important to note that we think of `(α), ν±(α) and λ(α)
as functions on QF . In [Minsky99], Minsky is considering a fixed representation whereas we are
considering a varying representation. So for example, we define:

`(α) : QF → R; [ρ]→ Reλ(ρ(α)).

We are considering a slice embedded in C via a holomorphic map f : C→ Rp(M), so we can write
[ρ] = f(µ) as a holomorphic function of a complex parameter µ. The cusp [ρ∞] (corresponding to
pinching α) corresponds to the point µ∞. With this understood, we can write

Tr(ρ(α)) = 2 + (µ− µ∞)Tr′∞(µ∞) +O((µ− µ∞)2). (3.2)

So we can either think of Tr(ρ(α)) as itself a local coordinate, or we can use this Taylor expansion
to find the µ coordinate. In this section we have chosen the sign of the trace function near [ρ∞] so
that Tr(ρ∞(α)) = 2.

The method is as follows. We wish to estimate the value of µ giving rise to a representation ρ near ρ∞
and in the boundary of the slice. Using the fact that Tr is holomorphic and the derivative is nonzero
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at µ∞ (by proposition 3), it suffices to estimate Tr(ρ(α)). Using the formula Tr(g) = 2 coshλ(g)/2,
it suffices to estimate λ(ρ(α)). We identify the normalised end invariants ν±(α), and use the pivot
theorem to estimate λ(ρ(α)) (subsequently, just written λ). This gives us an estimate 2πi/λ0 = ω0

of 2πi/λ = ω, which in turn gives us an estimate λ0 for λ.

Proof of lemma 5 The boundary of the Maskit or Bers slices is a homeomorphic image of R or
R̂, so that in a neighbourhood of the α cusp, `(α) ≤ ε (as ` is continuous) and the pivot theorem
applies. Writing Br(z) for the hyperbolic ball of radius r about the point z ∈ H, we have in this
case that:

ω = 2πi/λ ∈ Bc1
(ν+(α)− ν−(α) + i).

Define the point ω0 = ν+(α)− ν−(α) + i (in the upper half plane).

Let T ∈ PSL2Z be the normalisation so that T (p/q) = ∞. Writing T (p/q) = az+b
cz+d , we need to

find integers a, b, c, d such that T (p/q) = ∞ and ad − bc = 1. Trying c = q, d = −p we get that
T (p/q) = ∞ and we need a, b such that ap + bq = −1 which can be solved by Euclid’s algorithm.
This gives:

T (z) =
a

q
+

1

q2(z − p/q) .

So in this notation, ω0 = T (ν+) − T (ν−) + i. This in turn gives ω0 = q−2(ν+ − p/q)−1 + c for a
constant c. An essential point here is that since ν− is fixed in the Bers and Maskit slices, T (ν−)
is just a constant. Only ν+ is varying. We define the symbol τ , which will be used again later, as
follows:

τ =
1

q2(ν+ − p/q)
.

With this symbol, we can write ω0 = τ + c. Write dH for the hyperbolic metric on the upper half
plane, and diH for the hyperbolic metric on the right hand half plane, then H → iH; z 7→ 2πi/z is
an isometry.

Now define λ0 by ω0 = 2πi/λ0. The pivot theorem says that dH(ω, ω0) ≤ c1, and so using the
isometry we get that diH(λ, λ0) ≤ c1. The hyperbolic ball of radius c1 centred at λ0 in iH has
Euclidean radius Reλ0. sinh c1, so we get the bound |λ − λ0| ≤ 2Reλ0. sinh c1 for the Euclidean
distance.

Now λ0 = 2πi/ω0 = 2πi/(τ + c) = 2πi/τ + O(τ−2). So Reλ0 = O(τ−2) and hence dE(λ, λ0) =
O(τ−2). Hence λ = 2πi/τ + O(τ−2). Using TrW = 2 coshλ(W )/2 and the Taylor series for cosh

we get that Tr ρα = 2 − π2

τ2 + O(τ−3). Equating this with equation 3.2, we get that µ − µ∞ =

− π2

τ2 Tr′
∞

(µ∞) +O(τ−3) +O((µ− µ∞)2).

Explicitly, write Tr ρα = 2− π2

τ2 +Aτ , where |Aτ | ≤ A|τ |−3 (for some constant A). Using equation 3.2
we write Tr ρα = 2+(µ−µ∞)Tr′∞(µ∞)+Bµ where |Bµ| ≤ B|µ−µ∞|2 (some B). Equating we get

that µ− µ∞ = − π2

τ2 Tr′
∞

(µ∞) +Aτ/Tr′∞(µ∞)−Bµ/Tr′∞(µ∞). Write Cµ = µ− µ∞ +Bµ/Tr′∞(µ∞)

and Cτ = − π2

τ2 Tr′
∞

(µ∞) + Aτ/Tr′∞(µ∞). Clearly Cµ = Cτ , and Cτ = O(τ−2) so we can write

|Cτ | ≤ C|τ |−2 (for some C). It is also clear that for small |µ − µ∞| we have |Cµ| ≥ D|µ − µ∞|
(for some D). Putting these together we get that D|µ− µ∞| ≤ C|τ |−2. Squaring this, we get that
|Bµ| ≤ BC2|τ |−4/D2. So Aτ −Bµ = O(τ−3). In conclusion:

µ = µ∞ −
π2

τ2 Tr′∞(µ∞)
+O(τ−3).

Finally, suppose p/q and r/s are Farey neighbours, and define rn = np+r
nq+s , r∞ = p/q. Then rn → r∞

and rn is a Farey neighbour of r∞. In fact, the rn are the fractions corresponding to the sequence of

12



neighbouring cusps visible in figures 5 and 7. If ν+ = rn then τ = ±(n+s/q) depending on whether
ps− rq = ∓1. This gives us the estimate

µn = µ∞ −
π2

n2 Tr′∞(µ∞)
+O(n−3),

as required. �

In fact, we can actually say, by looking at Miyachi’s argument in [Miyachi03] (in particular, the proof
of proposition 4.3), that we must have aτ−2 < Reλ < bτ−2 for 0 < a < b and Imλ = 2π/τ+O(τ−2).
Similarly, we can say that ReTr ρα = 2− π2/τ2 +O(τ−3), and that there are constants 0 < a < b
such that aτ−3 < | Im Tr ρα| < bτ−3. This gives the cusps the local structure discussed in section
2.1. This refinement will be important later on in section 3.3.

3.2 Trace derivatives

Suppose now that Γ = 〈X,Y 〉 is a fixed free group on two generators X and Y , and that Γ is
generated by A and B so that in the boundary of the slice the cusps corresponding to A and B are
neighbours. Let f : C→ Rp(M) be a slice as in section 2, and let A and B be the p/q and r/s words
with respect to the generators X and Y . Assume that p/q < r/s. Defining rn = (np+ r)/(nq + s),
we get that the rn word is AnB. This is the sequence of neighbouring cusps between the A and
B cusps (see figure 6). If we had that r/s < p/q then this sequence of neighbouring cusps would
be BAn and the conclusions would be mostly but not exactly the same, the points at which the
conclusions are different will be highlighted. As before, Trn = TrAnB and Tr∞ = TrA. Below, we
will make a careful choice of the signs of these functions.

Lemma 7 If a sequence of points µ̃n is an approximate cusp sequence, then

Tr′n(µ̃n) =
±n3iTr′∞(µ∞)

π2
+O(n2).

In particular, since the sequence of neighbouring cusp points µn is an approximate cusp sequence,
then by lemma 5 we have

Corollary 8 For the sequence of neighbouring cusps,

Tr′n(µn) =
±n3iTr′∞(µ∞)

π2
+O(n2).

In particular, the initial directions of two close Farey neighbouring pleating rays are approximately

perpendicular to one another.

Proof of lemma 7 The Markov identity states that for elements A,B ∈ SL2C we have that

(TrA)2 + (TrB)2 + (TrAB)2 = TrA · TrB · TrAB.

Choose TrA = Tr∞ near µ∞ so that Tr∞ µ∞ = 2. Now choose a sign for TrB , and this will
determine a sign choice for TrAB so that Markov’s identity holds in a neighbourhood of µ∞. We
use the following formula, easily proved by induction for A,B ∈ SL2C,

TrAnB = aenλ/2 + be−nλ/2, (3.3)

where a and b are constants depending on A and B, and λ is the complex length of A defined
by TrA = 2 coshλ/2. (Note that if we were dealing with the case r/s < p/q this formula would
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be the same because TrAnB = TrBAn.) If n = 0 we get a + b = TrB and if n = 1 we get
aeλ/2 + be−λ/2 = TrAB . Solving these gives

a =
TrAB e

λ/2 − TrB

eλ − 1
, b =

eλ TrB −eλ/2 TrAB

eλ − 1
. (3.4)

With the choice of functions TrA, TrB and TrAB already made, define a choice of sign for Trn

using the formula Trn = aenλ/2 + be−nλ/2. It may or may not be the case with this choice that
Trn(µn) = 2. The sign ambiguity this introduces will be resolved in lemma 9. Also note that since
TrAB , TrB and λ are holomorphic functions of µ, so are a and b.

Let µ̃n be an approximate cusp sequence, that is

µ̃n = µ∞ −
π2

n2 Tr′∞(µ∞)
+O(n−3). (3.5)

We know that

Tr∞(µ) = 2 + (µ− µ∞)T +O(µ− µ∞)2 (3.6)

where T is defined as Tr′∞(µ∞) ∈ C. Thinking of λ as a function in µ, so that

λ(µ) = 2 cosh−1 Tr∞(µ)/2, (3.7)

we have

λ(µ) = 2
√

(µ− µ∞)T +O(µ− µ∞)3/2. (3.8)

The square roots in the expression above are not a problem. We will only differentiate λ at µ̃n 6= µ∞

and the sign ambiguity that is introduced by the use of the square root will be resolved in lemma
9.

We start by differentiating equation 3.7 and substituting equation 3.6 to get

λ′(µ) =
(Tr∞)′(µ)

√

T (µ− µ∞) +O(µ− µ∞)2
. (3.9)

Substituting equation 3.5 for µ̃n in equation 3.8 we get

λ(µ̃n) = ±2iπ

n
+O(n−3/2). (3.10)

Similarly we get

λ′(µ̃n) = ∓ inTn

π
+O(1) (3.11)

where Tn = Tr′∞(µ̃n). Since Tr∞ is holomorphic at µ∞ and µ̃n → µ∞ we have that Tn → T . In
fact, Tn = T +O(µ̃n − µ∞) = T +O(n−2). Finally, we differentiate equation 3.3 to get

Tr′n = a′enλ/2 + b′e−nλ/2 + anλ′/2 · enλ/2 − bnλ′/2 · e−nλ/2. (3.12)

Evaluating this at µ̃n and using all of the facts above gives, after some simplification, that

Tr′n(µ̃n) = ± (TrAB −TrB)n3T

2π2
+O(n2). (3.13)
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We now apply Markov’s identity. Since TrA(µ̃n) = Tr∞(µ̃n) = 2 + O(n−2) we get 4 + (TrB)2 +
(TrAB)2 = 2TrB ·TrAB +O(n−2) which can be factorised to give (TrB −TrAB)2 = −4 +O(n−2) or
TrB −TrAB = ±2i+O(1/n). Substituting this in equation 3.13 gives us the required result. �

3.3 Curve construction

At this point, we almost have theorem 1. It would seem as if we could take a cusp, find a close
neighbouring cusp approximately perpendicular to it, do the same to this cusp and repeat again
and again, each time rotating our view by 90 degrees until we get as much spiralling as we like.
There are two problems. First of all, there is a sign ambiguity in Tr′n(µ̃n) in lemma 7. This might
mean that our choice of neighbours might first increase the angle by 90 degrees, and then decrease
it by 90 degrees, and so on so that we end up with no spiralling at all. The other possibility is
illustrated in figure 14. In this case, we would actually rotate the angle by -270 degrees rather than
+90 degrees.

Inside

Outside

PSfrag replacements

℘ ℘n

A AnB

Figure 14: A logically possible monstrosity

In [Wright88], David Wright conjectured that the straight line segment between any two neighbour-
ing cusps in the Maskit slice is entirely contained within the slice. This is the conjecture referred to
at the beginning of section 2.1. This conjecture would rule out the possibility of something like fig-
ure 14. Below, we prove something almost as good as Wright’s conjecture, at least for the purposes
of this paper, that there is an arc between two close neighbouring cusps consisting of an almost
straight segment of length O(n−3) in the direction of the AnB cusp followed by an almost straight
segment of length O(n−2) in the direction of the A cusp. This is also good enough to rule out the
possibility of figure 14.

The construction of this arc is roughly as follows, illustrated in figure 15 (the O(−) notation refers to
the length of the two components of the arc). Near a close neighbouring cusp, the trace derivative
satisfies the perpendicularity equation of lemma 7. Suppose Trn(µn) = 2, and the pleating ray
is ℘n(t) parameterised so that Trn(℘n(t)) = t, then the direction of the pleating ray at ℘n(t)
is 1/Tr′n(℘n(t)) by a simple application of the chain rule. So, at those points ℘n(t) within some
small neighbourhood of the AnB-cusp, the direction of the pleating ray will be approximately
perpendicular to the direction of the pleating ray of the main cusp. It turns out that the size of the
neighbourhood of the AnB-cusp in which this is true is large enough that the pleating ray reaches
one of the bounding (2, 3)-cusps of the main cusp. The arc is then the initial section of the pleating
ray ℘n to the point where it touches one of the bounding (2, 3)-cusps, followed by the segment of
the bounding (2, 3)-cusp from the intersection point to the main cusp. More explicitly, let ψ+ be
the outer bounding (2, 3)-cusp curve. The arc we construct consists of the initial segment of ℘n

(from ℘n(2) to ℘n(t0) where ℘n(t0) is the first point of intersection of ℘n and ψ+), followed by the
segment of ψ+ from this intersection point to the main cusp.

Lemma 7 says that for any approximate cusp sequence µ̃n, we get an equation for Tr′n(µ̃n) depending
only on n with an O(n2) term. Here we are not assuming that µ̃n are the neighbouring cusps.
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Figure 15: Constructing an almost straight arc between two neighbouring cusps

Instead, suppose that µn is the sequence of cusp neighbours of µ∞ and µ̃n is any sequence with
µ̃n = µn +O(n−3) then µ̃n will be an approximate cusp sequence and lemma 7 will apply. For ease
of discussion, rotate and translate the picture so that the main cusp direction is straight upwards
and the main cusp is at 0. Without loss of generality, we consider only the right hand side of the
picture. Figure 12 shows this. We write φ(τ) for the parameterisation of the boundary and ψ+(τ)
for the outer bounding (2, 3)-cusp. Here τ ∈ R and φ(τ) is the point on the boundary such that
ν+ = p/q+q2τ (see the definition of τ in the proof of lemma 5, section 3.1). Choosing the constants
appropriately, we say that ψ+(τ) = −aiτ−2 + bτ−3 (see ψ+ marked on figure 15). It is easy to see
from the fact that we have an O(τ−3) estimate of φ(τ) that the horizontal distance from φ(τ) to
the outer bounding curve ψ+ is O(τ−3). Say this distance is less than Wτ−3.

Before proceeding with the construction of the arc, we slightly improve lemma 7. The proof of this
lemma gives the idea of the construction of the arc.

Lemma 9 Let µ̃n be an approximate cusp sequence, and let Trn(µn) = 2εn (so εn = ±1). Then

Tr′n(µ̃n) =
εnn

3iTr′∞(µ∞)

π2
+O(n2).

Notice that if we had assumed that r/s < p/q then we would need to prove Tr′n(µ̃n) =
−εnn3i Tr′

∞
(µ∞)

π2 +
O(n2). The point is that if the cusp neighbours are on the right hand side of the main cusp then
they point out one way, and if they are on the left they point out the other way (either way, they
point away from the axis of the main cusp).

Proof Without loss of generality, suppose εn = 1. In this case the initial direction of the pleating
ray is 1/Tr′n(µn). If εn = −1 then it would be −1/Tr′n(µn). Let

Tr′n(µ̃n) =
δn3iTr′∞(µ∞)

π2
+O(n2) (3.14)

for δ = ±1. Suppose we have that δ = −1. This leads to the contradiction, illustrated in figure 16,
that the pleating ray leaves the slice.

We can certainly say that | Imφ(τ)| ≤ Wτ−3 for some constant W . Define Cτ to be the disc of
radius

√
2Wτ−3 about φ(τ) so that the inscribed square Sτ intersects the imaginary axis. Now, for

any point µ̃n ∈ Cn we have that µ̃n = µn +O(n−3) because the radius of Cn is O(n−3), and so any
sequence of µ̃n ∈ Cn is an approximate cusp sequence. Here Cn is defined to be Cτ for the value of
τ corresponding to n, the precise value is τ = n+ s/q (see the definition of τ in the proof of lemma
5). Lemma 7 then says that equation 3.14 will hold for any µ̃n ∈ Cn.

Choose N large enough so that for n ≥ N we have that the angle from the horizontal of ℘′
n =

1/Tr′n(µ̃n) is less than π/4. Let Rn be the conical region of angle π/4 with the horizontal, centered
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Figure 16: Impossible consequence of δ = −1 in equation 3.14

at the AnB cusp µn, expanding in the direction of the negative horizontal axis. Now, ℘′
n(t) =

1/Tr′n(℘n(t)). Since 1/Tr′n(℘n(s)) has angle less than π/4 to the horizontal as long as ℘n(s) ∈ Rn,
the intersection of ℘n with Cn is contained within Rn (if ℘n left the region Rn it would have a
tangent with angle greater than π/4 with the horizontal at that point). In fact, it is possible that ℘n

could leave the region Rn and subsequently come back, but we need only consider the initial segment
of ℘n. More precisely then, the connected component of the intersection of ℘n with Cn containing
the cusp µn is contained within Rn. In particular, since Sn intersects the negative imaginary axis
so must ℘n (otherwise it would remain within a bounded region of the cusp). However, points on
the negative imaginary axis are never inside the slice, whereas points on ℘n are always within the
slice. This contradiction tells us that δ = 1 in equation 3.14. �
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Figure 17: Convexity argument

The construction of the curve from the AnB cusp to the main cusp works in much the same way.
However, rather than joining the AnB cusp to the imaginary axis via the initial segment of the
pleating ray, we join it to the outer bounding (2, 3)-cusp via the pleating ray, and from there to
the main cusp via the outer bounding (2, 3)-cusp. Consider figure 17. The conical region Rτ shown
shaded is defined to be centred at φ(τ) and bounded by two lines with gradient ±m1 where m1 is
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any positive number. Rτ is expanding in the direction of the positive horizontal axis. We want to
show that:

Lemma 10 For τ large enough, and for some constant D, the conical region Rτ always intersects

the outer bounding curve ψ+ within a distance Dτ−3 of φ(τ).

Proof We know that the outer bounding curve is ψ+(τ) = −aiτ−2 + bτ−3 (for some a, b ∈ R). It
is important to note here that the parameterisations of ψ+(τ) and φ(τ) are both such that as τ
increases to ∞, the point gets closer and closer to µ∞. In figure 17 this is illustrated by arrows on
the ψ+ curve. In particular, keep this in mind when thinking about the gradients of tangents to this
curve. Differentiating ψ+(τ), we get that ψ+(τ)′ = 2aiτ−3 − 3bτ−4. This gives the gradient from
the horizontal of the tangent line a value m(τ) = −2aτ/3b. Since this tends to −∞ as τ increases,
we can say that for τ > T1 we have |m(τ)| > m2 for a constant m2 which we will choose to be
anything larger than m1 (we could choose mi = i for instance).

On figure 17 the point labelled P1 is the intersection of ψ+ with the horizontal line through φ(τ).
The point labelled P2 is the point on the intersection of the vertical line through P1 and the upper
bounding line of the cone. The point labelled P3 is the intersection of the line L, which is from P1

with gradient −m2, with the lower bounding line of the cone. We define w1 to be the distance from
φ(τ) to P1, h1 to be the distance from P1 to P2, w2 to be the distance from φ(τ) to the vertical line
through P3, and h2 to be the distance from P3 to the horizontal line through φ(τ).

We get that h1/w1 = h2/w2 = m1 and h2/(w2 − w1) = m2. This gives h1 = m1w ≤ m1Wτ−3 and
h2 = w/(1/m1 − 1/m2) ≤ Wτ−3/(1/m1 − 1/m2). We want to define a constant T2 such that if
τ > T2 and for some other value, say τ̃ , we have that Imψ+(τ̃) < Imφ(τ) − h2 (that is, ψ+(τ̃) is
below a horizontal line through the point P1 in figure 17) then we have that τ̃ > T1. This can easily
be arranged using the formula for ψ+ and the estimate for Imφ(τ). Now for any τ > T2, because
|m(τ̃)| > m2 whenever Imψ+(τ̃) > Imφ(τ)− h2, the upper (resp. lower) bounding line of the cone
intersects ψ+ within a distance

√

w2
1 + h2

1 (resp.
√

w2
2 + h2

2), the distance from φ(τ) to P2 (resp.
P3). This gives us the required constant D. �

Now we proceed to construct a curve as in the proof of lemma 9. For all sequences of points µ̃n ∈ Cn

(the circle centred around the nth neighbouring cusp) we have that µ̃n is an approximate cusp
sequence. Choose N large enough that the absolute value of the gradient of a line in the direction
1/Tr′n is smaller than m1 for n ≥ N . Points on ℘n within a distance D/n3 of the nth cusp must
be within the conical region Rn which intersects the outer bounding (2, 3)-cusp ψ+, so the pleating
ray must also intersect ψ+. (As before, we are only interested in the connected component of ℘n

intersected with Cn containing µn, this initial segment of ℘n must be contained in Rn.) This gives
us the curve we wanted, just connect the initial segment of ℘n from the nth cusp to its intersection
with ψ+ to the segment of ψ+ from this intersection point to the main cusp.

3.4 Main Theorems

Proof of theorem 1 Given a point on the boundary, connect the base point z0 to any very
close cusp z1 by a curve α0 as in the definition of spiralling in section 2.2. Let z2 be a very close
neighbouring cusp of z1 on the right hand side. Construct the curve α1 by joining to the end of α0

the two segments described above (the initial segment of the pleating ray coming out of z2 followed
by the outer bounding (2, 3)-cusp of the z1 cusp). Let L1 and L2 be the branches of the log function
L, in the definitions in section 2.2, corresponding to z1 and z2. Now L1(z)−L2(z) = log z−z1

z−z2

. So, if
we look at only those points on α1 and α2 which don’t get too close to z1 or z2 (say, exclude a small
η-neighbourhood of z1 so that |z2− z1| < η/κ for some large κ), we can make L1(α1(t))−L2(α2(t))
as small as we like by making η small and κ large. This is because | z−z1

z−z2

− 1| = | z2−z1

z−z2

| ≤ 1/κ,
log(1) = 0 and log is continuous at 1. Note that since we are choosing an arbitrarily close neighbour
z2 of z1 we can ensure that z2 is in the η-neighbourhood of z1 that we choose. It will be important
in the proof of theorem 2 that there are a countable number of choices for the point z2, any of the
countably many cusp neighbours within the η-neighbourhood of z1 will do.

Suppose then that except in this neighbourhood of z1 we have that |L1(α1(t))− L2(α2(t))| < δ for
some small δ, say δ = π/24. Now, we know what α1 and α2 look like in this small neighbourhood
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of z1, and we can easily see that sp.degα2 ≤ sp.degα1 − π/3 + 2δ. This gives us that sp.degα2 ≤
sp.degα1 − π/4. Repeating this procedure, we get that sp.degαn ≤ sp.degα1 − nπ/4 and in
particular that sp.degαn → −∞ as n→∞.

So the boundary spirals to an indefinite extent near every point. By choosing neighbouring cusps
on the left hand side instead of the right, we can find curves spiralling arbitrarily clockwise instead
of counterclockwise, and by suitably alternating our choices we can keep the degree of spiralling
bounded. �

Proof of theorem 2 Let z∞ = lim zn where the zn are the series of cusp points in the previous
proof (in fact, we will add an additional requirement on zn later in this proof). Writing Ln(z) as
before, and L∞(z) = log(z − z∞) defined in the same way, we get L∞(z)− Ln(z) = log(1 +wn(z))
where wn(z) = (zn − z∞)/(z − zn). If we can find a sequence ζn such that ζn → z∞, ImLn(ζn) is
unbounded and log(1 +wn(ζn)) is bounded then ImL∞(ζn) will be unbounded, which would prove
that z∞ was a point of infinite spiralling on the boundary. To show that log(1+wn(ζn)) is bounded
it is enough to find a sequence such that |wn(ζn)| < 1/2, or equivalently that |ζn−zn| > 2|zn−z∞|.
For |z − zn| ≤ η, for some η > 0 depending on n, we know that ImLn(z) > a + bn for some
constants a, b > 0. (This just follows from the previous proof.) Now, if |zn− z∞| < η/2 then we can
choose a point ζn a distance η from zn, and this sequence satisfies |wn(ζn)| < 1/2. The additional
requirement on zn mentioned at the start of this proof is that |zn−z∞| < η/2 which can be ensured
by always choosing the next neighbouring cusp in the sequence (zn) sufficiently close to the previous
one.

The set of points where the spiralling is infinite is clearly dense (this procedure can be started as
close to any point as you like). Moreover, the number of limit points you can get to is uncountable.
For any given choice of the first m points in the sequence (zn), there is a countable number of
choices for the next point zm+1 (this is the comment in the proof of theorem 1 that says there are
a countable number of choices for what was called z2 in that proof). Here we will assume that the
point z1 is common to all such sequences. Even with this restriction we get an uncountable number
of limit points. Each choice of sequence (zn) gives rise to a unique limit z∞. This is because the
continued fraction expansion of an irrational is unique. Given a sequence (zn) define the sequence
(rn) to be the rational numbers associated to the cusps (so that zn = µ(rn)). The sequence (rn)
will be the sequence of continued fraction partial approximates to β = lim rn = µ−1(z∞) (because
zn+1 is a neighbour of zn). Since each irrational β has a unique continued fraction approximation,
different sequences will give rise to different limits. Let S be the set of limits z∞ coming about in
this way, we have shown that there is a bijection between S and the set of countable sequences of
natural numbers NN. Explicitly, this bijection is as follows. Given a finite sequence (zn)m

n=1, there
is a countable set Z((zn)m

n=1) of choices for the next point zn+1. For each such sequence, choose
a bijection π((zn)m

n=1) : Z((zn)m
n=1) → N. Given a sequence (an) ∈ NN we define a sequence zn

inductively as follows. The first point z1 is always the same. Given the first m points, (zn)m
n=1 we

define zn+1 = π((zn)m
n=1)

−1(an). The bijection between NN and S sends a sequence (an) ∈ NN to
the limit z∞ of this sequence. This is surjective by definitive, and injective because such sequences
give rise to unique limits. Since NN is uncountable, so is S. The character of the set of points about
which this result proves there is infinite spiralling, is somewhat akin to a countable union of Cantor
sets. �

References

[CCHS03] Richard Canary, Marc Culler, Sa’ar Hersonsky and Peter Shalen, Approximation by
maximal cusps in boundaries of deformation spaces of Kleinian groups, J. Differential
Geom. 64 (2003), no. 1, 57–109

[ChoiSeries03] Young Choi and Caroline Series, Lengths are coordinates for convex structures,
preprint

[Culler86] Marc Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986),
no. 1, 64–70

[KeenSeries93] Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of
the Teichmller space of punctured tori, Topology 32 (1993), no. 4, 719–749

19



[KeenSeries04] Linda Keen and Caroline Series, Pleating invariants for punctured torus groups,
Topology 43 (2004), no. 2, 447–491

[McMullen91] Curt McMullen, Cusps are dense, Ann. of Math. (2) 133 (1991), no. 1, 217–247

[McMullen98] Curt McMullen, Complex earthquakes and Teichmller theory, J. Amer. Math. Soc.
11 (1998), no. 2, 283–320

[Minsky99] Yair Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149
(1999), no. 2, 559–626

[Pomm92] Christian Pommerenke, Boundary behaviour of conformal maps, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
299. Springer-Verlag, Berlin, 1992

[Miyachi03] Hideki Miyachi, Cusps in complex boundaries of one-dimensional Teichmüller space,
Conform. Geom. Dyn. 7 (2003), 103–151

[Wright88] David Wright, The shape of the boundary of Maskit’s embedding of the Teichmüller
space of once-punctured tori, preprint

20


